Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1868(6): 166382, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35301087

RESUMO

PIMREG expression strongly correlates with cellular proliferation in both malignant and normal cells. Throughout embryo development, PIMREG expression is prominent in the central nervous system. Recent studies have described elevated PIMREG expression in different types of tumors, which correlates with patient survival and tumor aggressiveness. Given the emerging significance of PIMREG in carcinogenesis and its putative role in the context of the nervous system, we investigated the expression and function of PIMREG in gliomas, the most common primary brain tumors. We performed an extensive analysis of PIMREG expression in tumors samples from glioma patients. We then assessed the effects of PIMREG silencing and overexpression on the sensitivity of glioblastoma cell lines treated with genotoxic agents commonly used for treating patients and assessed for treatment response, proliferation and migration. Our analysis shows that glioblastoma exhibits the highest levels of PIMREG expression among all cancers analyzed and that elevated PIMREG expression is a biomarker for glioma progression and patient outcome. Moreover, PIMREG is induced by genotoxic agents, and its silencing renders glioblastoma cells sensitive to temozolomide treatment and affects ATR- and ATM-dependent signaling. Our data demonstrate that PIMREG is involved in DNA damage response and temozolomide resistance of glioblastoma cells and further supports a role for PIMREG in tumorigenesis.


Assuntos
Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
2.
Front Oncol ; 11: 668090, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211843

RESUMO

Glioblastoma (GBM) is the most lethal and frequent type of brain tumor, leading patients to death in approximately 14 months after diagnosis. GBM treatment consists in surgical removal followed by radio and chemotherapy. However, tumors commonly relapse and the treatment promotes only a slight increase in patient survival. Thus, uncovering the cellular mechanisms involved in GBM resistance is of utmost interest, and the use of cell lines has been shown to be an extremely important tool. In this work, the exploration of RNAseq data from different GBM cell lines revealed different expression signatures, distinctly correlated with the behavior of GBM cell lines regarding proliferation indexes and radio-resistance. U87MG and U138MG cells, which presented expressively reduced proliferation and increased radio-resistance, showed a particular expression signature encompassing enrichment in many extracellular matrix (ECM) and receptor genes. Contrasting, U251MG and T98G cells, that presented higher proliferation and sensibility to radiation, exhibited distinct signatures revealing consistent enrichments for DNA repair processes and although several genes from the ECM-receptor pathway showed up-regulation, enrichments for this pathway were not detected. The ECM-receptor is a master regulatory pathway that is known to impact several cellular processes including: survival, proliferation, migration, invasion, and DNA damage signaling and repair, corroborating the associations we found. Furthermore, searches to The Cancer Genome Atlas (TCGA) repository revealed prognostic correlations with glioma patients for the majority of genes highlighted in the signatures and led to the identification of 31 ECM-receptor genes individually correlated with radiation responsiveness. Interestingly, we observed an association between the number of upregulated genes and survivability greater than 5 years after diagnosis, where almost all the patients that presented 21 or more upregulated genes were deceased before 5 years. Altogether our findings suggest the clinical relevance of ECM-receptor genes signature found here for radiotherapy decision and as biomarkers of glioma prognosis.

3.
Data Brief ; 34: 106643, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385022

RESUMO

Astrocytomas are the most common and aggressive type of primary brain tumors in adults. The World Health Organization (WHO) assorts them into grades, from I to IV, based on histopathological features that reflect their malignancy [1]. Alongside with tumor progression, comes an increased proliferation, genomic instability, infiltration in normal brain tissue and resistance to treatments. The high genomic instability forges tumor cells enhancing key proteins that avoid cells from collapsing and favor therapy resistance [2]. To explore genes and pathways associated with tumor progression phenotypes we analyzed gene expression in a panel of non-tumor and glioma cell lines, namely: ACBRI371, non-tumor human astrocytes; HDPC, fibroblasts derived from dental pulp; Res186, Res259, Res286 and UW467 that include grade I, II and III astrocytoma cell lines derived from pediatric tumors; and T98G, U343MG, U87MG, U138MG and U251MG, all derived from GBM (grade IV). We also profiled gene expression changes caused by exogenously induced replicative stress, performing RNA sequencing with camptothecin (CPT)-treated cells. Here we describe the RNA-sequencing data set acquired, including quality of reads and sequencing consistency, as well as the bioinformatics strategy used to analyze it. We also compared gene expression patterns and pathway enrichment between non-tumor versus lower-grade (LGG), non-tumor versus GBM, LGG versus GBM, and CPT-treated versus non-treated cells. In brief, a total of 6467 genes showed differential expression and 5 pathways were enriched in tumor progression, while 2279 genes and 7 pathways were altered under the replication stress condition. The raw data was deposited in the NCBI BioProject database under the accession number PRJNA631805. Our dataset is valuable for researchers interested in differential gene expression among different astrocytoma grades and in expression changes caused by replicative stress, facilitating studies that seek novel biomarkers of glioma progression and treatment resistance.

4.
J Biomol Struct Dyn ; 39(3): 1017-1028, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32028848

RESUMO

The objectives of this study were to extract and purify Bixin from the seeds of Bixa orellana and to evaluate its hypoglycemic activity in vivo, as well as, to conduct an in silico study of selectivity on peroxisome proliferator-activated receptors via molecular docking and molecular dynamics simulations. Oral administration of Bixin (10 mg/kg) significantly reduced their glucose level that was alloxan-induced diabetic rats. Bixin showed in silico selectivity on peroxisome proliferator-activated receptors (PPARs), particularly by the peroxisome proliferator-activated receptor gamma (PPARγ), which supports the hypoglycemic activity of Bixin. From the results obtained, it can be inferred that Bixin presents hypoglycemic characteristics, which was confirmed by the results obtained from the in vivo and in silico tests. Bixin may act by other pathways to control blood glucose and thus it is possible that it presents a different toxicity profile than troglitazone, rosiglitazone and pioglitazone. However, more studies on the activity and toxicity of Bixin are needed to evaluate for further clinical use. Communicated by Ramaswamy H. Sarma.


Assuntos
Diabetes Mellitus Experimental , Tiazolidinedionas , Aloxano , Animais , Carotenoides , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , PPAR gama , Ratos
5.
Genet Mol Biol ; 43(1 suppl 1): e20190066, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31930277

RESUMO

Glioblastoma (GBM) is the most common and malignant type of primary brain tumor, showing rapid development and resistance to therapies. On average, patients survive 14.6 months after diagnosis and less than 5% survive five years or more. Several pieces of evidence have suggested that the DNA damage signaling and repair activities are directly correlated with GBM phenotype and exhibit opposite functions in cancer establishment and progression. The functions of these pathways appear to present a dual role in tumorigenesis and cancer progression. Activation and/or overexpression of ATRX, ATM and RAD51 genes were extensively characterized as barriers for GBM initiation, but paradoxically the exacerbated activity of these genes was further associated with cancer progression to more aggressive stages. Excessive amounts of other DNA repair proteins, namely HJURP, EXO1, NEIL3, BRCA2, and BRIP, have also been connected to proliferative competence, resistance and poor prognosis. This scenario suggests that these networks help tumor cells to manage replicative stress and treatment-induced damage, diminishing genome instability and conferring therapy resistance. Finally, in this review we address promising new drugs and therapeutic approaches with potential to improve patient survival. However, despite all technological advances, the prognosis is still dismal and further research is needed to dissect such complex mechanisms.

6.
Tumour Biol ; 39(4): 1010428317694552, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28378638

RESUMO

Astrocytomas are the most common primary brain tumors. They are very resistant to therapies and usually progress rapidly to high-grade lesions. Here, we investigated the potential role of DNA repair genes in astrocytoma progression and resistance. To this aim, we performed a polymerase chain reaction array-based analysis focused on DNA repair genes and searched for correlations between expression patters and survival prognoses. We found 19 genes significantly altered. Combining these genes in all possible arrangements, we found 421 expression signatures strongly associated with poor survival. Importantly, five genes (DDB2, EXO1, NEIL3, BRCA2, and BRIP1) were independently correlated with worse prognoses, revealing single-gene signatures. Moreover, silencing of EXO1, which is remarkably overexpressed, promoted faster restoration of double-strand breaks, while NEIL3 knockdown, also highly overexpressed, caused an increment in DNA damage and cell death after irradiation of glioblastoma cells. These results disclose the importance of DNA repair pathways for the maintenance of genomic stability of high-grade astrocytomas and suggest that EXO1 and NEIL3 overexpression confers more efficiency for double-strand break repair and resistance to reactive oxygen species, respectively. Thereby, we highlight these two genes as potentially related with tumor aggressiveness and promising candidates as novel therapeutic targets.


Assuntos
Astrocitoma/mortalidade , Neoplasias Encefálicas/mortalidade , Reparo do DNA , Apoptose , Astrocitoma/genética , Astrocitoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Prognóstico
7.
Oncotarget ; 8(15): 24518-24532, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28445939

RESUMO

Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.


Assuntos
Dano ao DNA/genética , Glioma/genética , Histonas/metabolismo , Glioma/metabolismo , Glioma/patologia , Humanos , Metilação , Radiossensibilizantes , Transdução de Sinais
8.
BMC Cancer ; 17(1): 123, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28187758

RESUMO

BACKGROUND: Photodynamic therapy (PDT) has proven to be a promising alternative to current cancer treatments, especially if combined with conventional approaches. The technique is based on the administration of a non-toxic photosensitizing agent to the patient with subsequent localized exposure to a light source of a specific wavelength, resulting in a cytotoxic response to oxidative damage. The present study intended to evaluate in vitro the type of induced death and the genotoxic and mutagenic effects of PDT alone and associated with cisplatin. METHODS: We used the cell lines SiHa (ATCC® HTB35™), C-33 A (ATCC® HTB31™) and HaCaT cells, all available at Dr. Christiane Soares' Lab. Photosensitizers were Photogem (PGPDT) and methylene blue (MBPDT), alone or combined with cisplatin. Cell death was accessed through Hoechst and Propidium iodide staining and caspase-3 activity. Genotoxicity and mutagenicity were accessed via flow cytometry with anti-gama-H2AX and micronuclei assay, respectively. Data were analyzed by one-way ANOVA with Tukey's posthoc test. RESULTS: Both MBPDT and PGPDT induced caspase-independent death, but MBPDT induced the morphology of typical necrosis, while PGPDT induced morphological alterations most similar to apoptosis. Cisplatin predominantly induced apoptosis, and the combined therapy induced variable rates of apoptosis- or necrosis-like phenotypes according to the cell line, but the percentage of dead cells was always higher than with monotherapies. MBPDT, either as monotherapy or in combination with cisplatin, was the unique therapy to induce significant damage to DNA (double strand breaks) in the three cell lines evaluated. However, there was no mutagenic potential observed for the damage induced by MBPDT, since the few cells that survived the treatment have lost their clonogenic capacity. CONCLUSIONS: Our results elicit the potential of combined therapy in diminishing the toxicity of antineoplastic drugs. Ultimately, photodynamic therapy mediated by either methylene blue or Photogem as monotherapy or in combination with cisplatin has low mutagenic potential, which supports its safe use in clinical practice for the treatment of cervical cancer.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Cisplatino/farmacologia , Luz , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Histonas/metabolismo , Humanos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Fotoquimioterapia/métodos , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
9.
PLoS One ; 8(4): e62200, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638004

RESUMO

BACKGROUND: Diffuse astrocytomas are the most common type of primary brain cancer in adults. They present a wide variation in differentiation and aggressiveness, being classified into three grades: low-grade diffuse astrocytoma (grade II), anaplastic astrocytoma (grade III) and glioblastoma multiforme (grade IV), the most frequent and the major lethal type. Recent studies have highlighted the molecular heterogeneity of astrocytomas and demonstrated that large-scale analysis of gene expression could help in their classification and treatment. In this context, we previously demonstrated that HJURP, a novel protein involved in the repair of DNA double-strand breaks, is highly overexpressed in glioblastoma. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that HJURP is remarkably overexpressed in a cohort composed of 40 patients with different grade astrocytomas. We also observed that tumors presenting the higher expression levels of HJURP are associated with poor survival prognosis, indicating HJURP overexpression as an independent prognostic factor of death risk for astrocytoma patients. More importantly, we found that HJURP knockdown strongly affects the maintenance of glioblastoma cells in a selective manner. Glioblastoma cells showed remarkable cell cycle arrest and premature senescence that culminated in elevated levels of cell death, differently from non-tumoral cells that were minimally affected. CONCLUSIONS: These data suggest that HJURP has an important role in the maintenance of extremely proliferative cells of high-grade gliomas and point to HJURP as a potential therapeutic target for the development of novel treatments for glioma patients.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Glioblastoma/patologia , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Análise de Sobrevida , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...